Thickener vs. Clarifier: What's the Difference?

June 18, 2019
Thickeners and clarifiers are both used to separate solids and liquid, but how do they differ?

Simply put, Thickeners focus on the settled solids, and clarifiers focus on the clear overflow liquor — the name given to a solution free of suspended solids.


A clarifier will typically treat a low-density slurry of less than 5% weight per weight solids with a focus on producing a clear liquid with suspended solids of less than 100 parts per million (ppm). To achieve these high levels of clarity, the upcurrent flow (rise rate) needs to be low to prevent entrainment of fine particles.

Clarifiers are characterized by having larger diameter, shallow tanks with a more lightweight rake and drive system. 

How to size a clarifier

A starting point for sizing clarifiers for most sand and mineral processing applications is to take the volumetric overflow divided by settling area, often abbreviated to m/hr or gpm/ft2. 

While this provides a guideline, testwork is highly recommended to confirm the required rise rate to meet the target clarity. Testwork is comprised of a matrix of different throughput rates, chemical dosages and shear conditions. For any given flow, the tank area or diameter required is determined by the designated rise rate, the chemical dosage regime and the specific design of the equipment. 

Glossary of Thickener Terms

How clarifiers work

The clarification process uses gravity but is often enhanced with chemical treatment. To achieve high levels of clarity, both a flocculant and coagulant may be required.

The coagulant can be added initially to neutralize the surface charge on particles and allows them to stick together, forming clumps. The flocculant can be afterward to pull all the coagulated clumps together to form flocs.

A complication may arise for very low-density feed slurries (those less than 1% solids) where the particles are too dispersed to be easily collected by the flocculant or coagulant. In these cases, an improved solids-contact mechanism may be required where careful control of shear conditions is needed. These mechanisms ensure sufficient energy to create large (and faster settling) colloids but not high enough shear to break apart the loosely bound flocs. 


One commonly employed technique for improved solids contact is known as High Density Sludge (“HDS”). This technique involves recycling a portion of the underflow to a pre-contact tank to mix with the incoming feed to reduce the sludge volume and increase the density

Another technique is to settle the solids on steeply inclined laminar plates. With this technique, the solids fall faster by sliding down the plate surface rather than in a free-settling mode. In principle, this is a great idea, but the requirements to build a plate stack that can structurally manage a high solids loading restricts this nifty idea to smaller, lightweight solids applications.

Should the process specification require a suspended solids level significantly lower than 100ppm – perhaps discharge to public waterways, a sedimentation process alone may not be a cost-effective solution. Combining it with a security filter may be an option. Think of a security filter like a swimming pool filter — the clarifier overflow passes through a medium such  sand or other more exotic material. However, as with the swimming pool filter, you have to periodically backwash to clean the media.  


A thickener, in contrast, is designed to do just that – thicken! 


While a part of this process by definition releases the liquid, the quality of the overflow liquor is secondary. Suspended solids clarities of up to 1,000ppm can be tolerated in some cases, though a typical specification is less than 300ppm. 

Like clarifiers, Thickeners can use flocculants to clump smaller particles together, allowing them to settle faster than they would on their own without the use of the flocculating agent. A rake mechanism in the Thickener helps guide the settling solids to the center of the tank for discharge via centrifugal underflow pump.

Depending on the type of thickener, the underflow will range in density from a free-flowing mud to a paste. 

Thickeners are characterized by having higher side walls, steeper floor slopes and a more robust mechanism.

How to size a Thickener

To get the highest underflow densities, features such a tank geometry and rake design will be more critical. The underflow density, to a degree, is proportional to the mud residence time (how long the particles remain the tank) and the compression effects of the column of settled muc so driven by the side-wall height. 


Clarifier or Thickener?

It can be tempting to try to do both the thickening and clarifying functions to maximum benefit in one go. While technically this is feasible, you’d need a really large diameter (for low rise rate and good clarity), yet tall tank with higher side walls and a robust drive and rake mechanism. 

As you would reasonably expect, this will come at a substantial cost premium, and it may be difficult to convince the money men it is a sound proposition.

The trick is to figure out what is really important for your application, thickening or clarifying, and design the equipment to suit. 

Tags: Tailings & Water Management

Need Some Help?

Our customer service team is here to help you 24/7. We can ship you parts, send field service technicians to your site and answer any questions you have. Whatever you need, we are here for you.